南京夏季不同叶位凤眼莲叶片光合作用 的日变化及其生态因子分析 从 伟12 李 霞1* 盛 婧1 郑建初1 严少华1 (1. 江苏省农业科学院, 江苏 南京 210014; 2. 南京农业大学 生命科学学院, 江苏 南京 210097) 摘要:利用 Li - 6400 便携式光合作用系统 在南京夏季(2010 年 6—8 月) 晴天 .分别选取人工种养凤眼莲的倒 1 叶、倒 3 叶和倒 6 叶,测定不同叶位叶片一天中不同时间净光合速率(Pn) 等光合参数的变化 .并将外界光强和气温与叶片的光合参数进行相关性分析。结果表明: 凤眼莲不同叶位叶片 Pn 的日变化 6 月呈典型的单峰曲线 .但是 7 月 8 月呈现典型的双峰曲线 整个夏季凤眼莲叶片都出现了明显的中午光合作用的抑制现象——光合 "午睡"现象 显示了凤眼莲为 C_3 植物的光合特征。其中气孔导度(C_8) 的日变化与 Pn 的日变化相似; 蒸腾速率(Tr) 的日变化在 6 月与 Pn 基本相似 .但是 7 月 8 月的 Tr 与 Pn 不同 .是现出单峰曲线 .在 .15:00 出现峰值; 胞间 CO_2 浓度(C_8) 的日变化则与 Pn 的相反; 而其不同叶位的 Pn 也存在一定差异 相对而言。倒 6 叶的 Pn 均明显低于倒 1 叶和倒 3 叶,而倒 3 叶的光合能力最强。相关性分析表明 .不同月份影响光合的生态因子有差异。 关键词:凤眼莲;光合作用;日变化 中图分类号: Q945.11 文献标志码: A 文章编号: 1000-2286(2011)03-0445-07 ## The Diurnal Variation of Photosynthesis of Water Hyacinth Leaves in Different Positions in Summer of Nanjing and Its Ecological Factors CONG Wei $^{1\ 2}$, LI Xia^{1*} , SHENG Jing 1 ZHENG Jian-chu 1 , YAN Shao-hua (1. Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China; 2. College of Life Sciences , Nanjing Agricultural University , Nanjing 210014 , China) **Abstract**: In order to provide effective measures for farming and cultivation of water hyacinth in Jiangsu region, using Li -6400 portable photosynthesis system, the net photosynthetic rate (Pn) and other photosynthetic parameters of 1th, 3rd and 6th leaf from artificial planting water hyacinth were selected, and then measured respectively at different times of the sunny day. Then the correlation analysis was made between the environment conditions such as air temperature and light intensity and all the photosynthetic parameters. The results were as follows: Pn of different leaf positions showed a single peak curve in a day in June, but those were a bimodal curve in July and August. Pn of all the leaves of water hyacinth were suffering a remarkable inhibition at noon during the whole summer, showing that the photosynthetic characteristics of water hyacinth is pertain to C_3 plant. At the same time, the diurnal variations of stomatal conductance (Pn) were similar to those of Pn at the similar period. The diurnal variation of Pn and Transpiration rate (Pn) were very similar in June. However, 收稿日期:2010-12-14 修回日期:2011-04-15 基金项目:国家科技支撑计划项目(2009BAC63B01) 作者简介: 丛伟(1985—) 男 硕士生 主要从事植物光合作用研究 E – mail: congwei24@163. com; * 通讯作者: 李霞 , 研究员 ,博士 E – mail: jspplx@ jaas. ac. cn。 the diurnal variation between Pn and Tr was different in July and August , which showed a single peak , and the peak appeared at 15:00. The diurnal variation between Pn and Intercellular CO_2 concentration (Ci) was converse; while the Pn of leaves at different positions were of some differences , the Pn of the 6th leaf was significantly lower than that of the 1th and the 3rd leaf , while photosynthetic capacity of the 3rd leaf was the highest of the leaves , due to their different developmental stages of leaves. Correlation analysis showed that the photosynthetic performance of the plants during different months of summer was closely related to their environmental factors. **Key words**: water hyacinth; photosynthesis; diurnal changes 凤眼莲(*Eichhornia crassipes*),俗称水葫芦,属维管束水生植物。凤眼莲引入中国最早是用于饲料,由于它具有发达的根系、旺盛的生长繁殖能力以及超强的吸收能力,对水生生态系统和渔业生产造成了严重威胁,被位列世界自然保护联盟(IUCN)公布的全球100种最具威胁的外来物种之中^[1],如何有效地控制和利用这个物种成为摆在生态和生物防治工作者的双重课题。近年来凤眼莲在富营养化水体治理工程中被广泛应用^[2-3],培养的材料又可用于食用菌的培养基质以及沼气发酵的原料等,使其成为现代高效生态农业的一种重要利用资源,也为人们有效控制该物种提供了新出路^[4]。 光合作用是绿色植物物质生产的基础 植物叶片光合性能与其生产能力呈正相关^[5-6]。较早已有环境对凤眼莲生物生产力影响的报道^[7],进一步通过对不同水生植物光合参数的比较表明,与水花生相比,凤眼莲有较高的叶面系数和叶绿素含量,但是对低温的适应性比水花生差^[8]。朱慧等^[9]从入侵性和凤眼莲的光合能力的角度研究表明,广东地区的凤眼莲具有较高的光能利用力与较强的光合响应机制,这是因为它比大薸具有更强入侵力的生理基础。对于富营养化水域较多的江苏地区,如何提高人工种养条件下凤眼莲的生长则是该地区需关注的重要问题。已有的初步研究表明,南京8月凤眼莲叶片的光合能力显著高于水稻的,并与玉米的接近^[10]。本研究进一步以江苏南京地区人工种植的凤眼莲为试验材料,在凤眼莲生长的旺盛时期(6—8月),系统研究其不同叶位光合作用的日变化及其影响生态因子,旨在了解凤眼莲在该地区不同的月份光温条件下的光合表现,以期为该地区凤眼莲的规模化养殖和栽培提供有效依据。 ## 1 材料与方法 #### 1.1 试验材料 凤眼莲(Eichhornia crassipes) ,属雨久花科凤眼莲属 采自江苏省农业科学院池塘内(主要养分指标为总氮 $5.27~\mathrm{mg/L}$,总磷 $0.36~\mathrm{mg/L}$,# $10.67~\mathrm{mg/L}$) 其初始放养量为 $2~\mathrm{kg/m^2}$ 。采用毛竹围栏小区试验 小区面积为 $2~\mathrm{m^2}$,当凤眼莲生物量为 $25~\mathrm{kg/m^2}$ 时统一取样,选取健壮单枝,叶片数为(6 ± 3) 个,进行光合生理指标的测定。 ## 1.2 叶片光合参数日变化的测定 夏季 6 月、7 月和 8 月分别在一天中的 07: 00 ρ 9: 00 ρ 1: 00 ρ 1: 00 ρ 1: 00 ρ 2: 00 ρ 3: 00 ρ 5: 00 ρ 1: 00 时进行测定 ρ 3 其国 ρ 5 Li ρ 6 Li ρ 6 但携式光合仪 ρ 7 开放系统 ρ 6 用红蓝光源测定。光量子通量密度 (PPFD) 随自然条件下的光量子通量密度变化而变化 ρ 6 ρ 7 加回 ρ 8 中(ρ 9 中区 #### 1.3 统计分析 试验数据采用 Excel 2003 绘图 ,通过 SPSS17. 0 统计软件对光合参数与相应的气温(T) 和光强(PFD) 进行双变量相关性分析。 ## 2 结果与分析 ## 2.1 江苏南京地区人工种养的凤眼莲的光合日变化 从光强(图 1A) 和温度(图 1B) 的变化可知两者都呈单峰的变化趋势 ,其中光强的最高峰 6 月在 13:00 时 7 月和 8 月份是 11:00; 而气温 3 个月都是在 15:00。但是凤眼莲不同叶位叶片的光合日变化 图 1 江苏南京地区夏季人工种养的凤眼莲不同叶片 Pn 的日变化以及当天光强与气温的变化(2010 年 6—8 月) Fig. 1 The diurnal variation of Pn of water hyacinth leaves and the changes of light intensity and temperature in the day of the summer in Nanjing, Jiangsu (June to August 2010) (图 $1C \times D$) 不同的月份之间呈现出不同的变化趋势: 6 月份呈现出单峰变化的趋势,从 07:00-11:00,随光强和温度的增强 Pn 呈上升趋势,其中最高峰出现在 11:00 时,均超前于一天中光强和气温最高值出现的时间,而 7 月、8 月却呈现出典型的双峰曲线,峰值分别出现在 11:00 和 15:00,且中午呈现出明显的光合作用 "午睡"现象,第一峰值与一天中光强最高峰出现时间一致。只是随气温的继续上升 Pn 呈下降趋势,与 6 月测定时的气温相比 7 月和 8 月 12:00 的气温已超过 40 $^{\circ}$,大于凤眼莲光合作用的最适温度范围($30 \sim 35$ $^{\circ}$ C) [9] 此时外界温度则成为限制其最大光合能力发挥的环境因子,因此 Pn 下 降 即该地区自然条件下凤 眼莲叶片光合表现并不是直 接与光强或气温单一因子相 关 而可能是光温互作的结 果。值得注意的是,不同叶 位的光合日变化也不同,虽 然倒1叶和倒3叶的光合日 变化趋势相类似,但是倒1 叶在 07: 00 ~ 11: 00 ,其 Pn 均比倒 3 叶的低; 而 13:00 ~17:00 则与倒 3 叶的接 近 其中 07:00 时只有倒 3 叶的 85.08%。 倒 6 叶的 Pn 日变化趋势与倒1叶和倒3 叶的变化不相同,不仅上午 没有显著的诱导高峰,而且 下午 Pn 也比其他 2 个部位 的叶片要低,其中在11:00 时,倒6叶的Pn只有倒3叶 的 42. 26% ,这可能与其叶 片衰老导致其生理功能衰退 有关。从凤眼莲不同叶位一 天中的光合表现看,其光合 日变化节律不仅与外界的光 温互作有关,而且与叶片的 发育阶段有关。 2.2 江苏南京地区人工种 养的凤眼莲的气孔导度和胞 间 CO₂ 浓度的日变化 不同植物一天中碳的日变化会有所不同[11]。这种碳的日变化是由植物呼吸作用速率和光合作用速率的变化造成的。从图 2A 可以看出 夏季凤眼莲不同月份 Gs 的变化趋势明显不同。6 月凤眼莲的倒1 叶和倒3 叶的Gs 日变化呈明显的单峰趋势。倒6 叶在 07:00~13:00 图 2 江苏南京地区夏季人工种养的凤眼莲 不同叶片 Gs、Ci 和 Tr 的日变化(2010 年 6—8 月) Fig. 2 The diurnal variation of Gs, Ci and Tr in different artificial planting and breeding of water hyacinth leaves in summer in Nanjing, Jiangsu (June to August 2010) 的变化与倒 1 叶和倒 3 叶的类似 ,而在 15:00 之后还有一个上升 ,其峰值出现在 09:00 ,13:00。7 月、8 月倒 1 叶和倒 3 叶的 G 从 07:00—13:00 呈现出下降趋势 在 13:00 会出现一个峰值; 倒 6 叶的变化趋势与前者类似 ,但是峰值却出现在 13:00。不同月份凤眼莲的 G 8 的变化趋势总体上和 P 8 的变化趋势十分的相似 ,只是高峰出现的时间不同 G 8 月 G 8 高峰出现在 G 900 ,比 G 8 的早了 2 G 8 月份 G 8 的最高值出现在 G 900 ,之后随光强和气温的增强 ,气孔逐渐关闭。但从图 G 2 可以看出 整个夏季 G 6 的 日变化进程表现为两边高中间低的趋势,相对而言,7 月和 8 月的 Pn 并没有随气孔导度的下降而下降,而是随光强的增强而增高,可见,Pn 的变化显然与气孔密切相关。 蒸腾速率 (T_r) 的日变 化趋势(图 2B)6 月呈典型 的双峰曲线 表现出"午睡" 的现象。与Pn不同的是, 15:00 时还有另一个明显的 高峰 并且与气温的最高峰 重叠:7月呈现单峰曲线,峰 值出现在 15:00 ,与气温的 最高值重叠: 8 月的变化趋 势和7月份相似,只是峰值 比7月早出现2h 表明蒸腾 能力的高低与温度的关系更 大。蒸腾作用虽然可通过扩 散的水分降低叶片温度,从 而减轻高温环境对叶片造成 的灼伤,但也是以损失另一 个光合作用底物为代价的。 因此,叶片蒸腾作用强的 Pn并不高。不同叶位的 G_{S} 、Ci和 Tr 的变化不同 ,其中倒 1 叶和倒3叶的表现类似,而 倒 6 叶随光强和温度变化的 日节奏响应不明显,可能与 其叶片衰老有关。 2.3 江苏南京地区人工种养的凤眼莲的气孔限制值 (Ls)、水分利用率(WUE)以及羧化效率的日变化 大多数环境下 ,气孔导度对 CO_2 的限制会影响到碳同化 $^{[12]}$ 。从图 3A 可以看出 ,凤眼莲叶片的气孔限制值 L_3 呈单峰的变化趋势 ,6 图 3 江苏南京地区夏季人工种养的凤眼莲的气孔限制值(Ls)、水分利用率(WUE)以及羧化效率的日变化(2010年 6-8月) Fig. 3 The diurnal variation of Ls , WUE and carboxylation efficiency in different artificial planting and breeding of water hyacinth leaves in summer in Nanjing , Jiangsu ((June to August of 2010) 月最高峰在 15:00 ,与最高气温的时间一致; 7 月、8 月份的最高峰出现在 11:00 ,与最大光强出现的时间一致。6 月外界最高温度影响气孔的关闭而导致 Pn 下降,而 7 月、8 月整体外界气温高于 6 月,因此在外界光强达到最大时,它会诱发气孔关闭,从而减少水分的过分蒸发; 但同时也限制了光合作用的底物 CO_2 的进入,从而限制了光合能力。从图 3B 可看出,凤眼莲叶片的水分利用率(WUE) 3 个月相类似,均在 09:00 点达到最高值,下午随气温的增加下降幅度更大。羧化效率是表示 CO_2 固定过程中,12-12 磷酸核酮糖羧化加氧酶(Rubisco) 羧化 12-12 二磷酸核酮糖(RuBP) 的能力,可用 Pn 与 Ci 的比值表示。有学者提出表观羧化效率的差别是植物之间光合效率差异的主要原因,也是植物在不同时间段光合效率差异的主要原因 Pn 是 Pn 是 Pn 和 ## 2.4 江苏南京地区人工种养的凤眼莲光合参数的相关性分析 将不同月份测定当天的光合参数与相应的气温(T) 和光强(PFD) 进行相关分析(表 1) 结果表明: 与气温比较 β 月外界光强对凤眼莲光合能力的影响更大; 7 月外界光强的高低与凤眼莲叶片的 $Pn \times Ls$ 以及羧化效率呈正相关 与 $Gs \times Ci$ 和 WUE 呈负相关 其中与 Ls 和羧化效率呈显著正相关; 气温与 $Pn \times Ls$ 以及羧化效率也呈正相关 与 $Gs \times Ci$ 和 WUE 呈负相关 但是温度与 WUE 呈显著负相关。8 月外界光强和凤眼莲叶片的 $Pn \times Ls \times WUE$ 以及羧化效率呈正相关 与 $Gs \times Ci$ 呈负相关 其中与 Pn 和羧化效率呈显著正相关,与 $Gs \times Ci$ 是负相关,其中与 Pn 和羧化效率呈显著正相关,与 $Cs \times Ci$ 和 WUE 是负相关。 表 1 不同月份凤眼莲叶片的光合参数与环境温度和光强的相关性分析(南京 2010) Tab. 1 Correlation coefficient between photosynthetic indexes and air temperature or light intensity for Eichhornia crassipes during a day in different months | 测定时间 | 环境因子
Environmental factor | 光合参数 Photosynthetic parameters | | | | | | |----------------|------------------------------|--------------------------------|--------|------------|--------|------------|--------------------------| | Measuring time | | Pn | Gs | Ci | Ls | WUE | Carboxylation efficiency | | 6月 June | 气温 | 0.023 | -0.157 | -0.525* | 0.420 | -0.194 | 0. 276 | | | 光强 | 0.527* | 0.039 | -0.345 | 0.310 | 0.244 | 0.536* | | 7月 July | 气温 | 0.135 | -0.178 | -0.480 | 0.664 | -0.850^* | 0.464 | | | 光强 | 0.763 | -0.597 | -0.766 | 0.871* | -0.297 | 0.901* | | 8月 August | 气温 | 0. 125 | -0.774 | -0.687 | 0.262 | -0.796 | 0.289 | | | 光强 | 0.804^{*} | -0.632 | -0.898^* | 0.801 | 0.097 | 0.892* | ^{*} 表示显著性 P < 0.05。* Significant at 0.05 level. ## 3 讨论 在晴天,照射到植物叶片上的太阳光的强度从早到晚是逐渐变化的,与此同时,植物的光合作用随外界的光温也呈现相应的日动态变化。光合日变化是植物维持光合机构内不同组分对环境条件响应的一种平衡能力。外界环境中的光强、相对湿度、温度、 CO_2 浓度等通过改变植物叶片内部的生理生化过程而达到影响水葫芦光合作用[14]。特别是晴天中午, C_3 植物的光合作用大多呈现"午睡"现象 [7,15],这是植物在长期进化过程中对环境适应的一种现象 [16]。已有的研究表明:中午前后较低的空气湿度和较高的温度引起饱和差的增大是光合作用"午睡"现象的主要原因 [8,17] 而气孔导度对饱和水气压差相当敏感 [18-19] 本文的研究表明:南京不同月份的光温差异导致凤眼莲的光合表现不同,如 6 月主要是光温不太强 到下午温度最高时 Pn 才有所下降,而且中午植物光合作用的"午睡"也不明显。到 7 月份,随着光强和温度达到最高 凤眼莲在此外界环境下,其光合作用和蒸腾作用都需加强,但是蒸腾需求加强时,气孔会收缩以减少水分的散失,同时 Ci 降低使光合作用下降;当温度超过一定程度后,光合作用、蒸腾作用和气孔导度分别下降。因此,光强和温度的互作,强烈地抑制其中午光合作用。8 月气温与 7 月类似,只是上午的光强比 7 月减弱,此时其 Pn 显著地高于其他月份同期的,应该说光温互作有利于植物光合能力的发挥,但是其 "午睡"现象更多地依赖于外界光强的强弱,外界生态因子引起叶温和饱和 水气压差的升高是光合"午睡"的根本原因[19]。 本研究结果表明 在南京夏季晴天自然条件下 凤眼莲的光合日变化 6 月呈 "单峰" 曲线 7 月 8 月呈 "双峰" 曲线。凤眼莲在 7 月和 8 月 其 Pn 能更快地达到最高值 所以南京地区 7 月和 8 月的光温条件更有利于凤眼莲光合物质的快速累积。当然凤眼莲不同叶位的光合作用有一定差异 如倒 1 叶和倒 3 叶 Pn 日变化趋势类似 但最大光合能力有明显差别; 而倒 6 叶对外界光强的响应相对迟钝 最大光合能力也较低。综合南京夏季凤眼莲的光合参数与环境温度和光强的相关性分析结果以及 Pn 的日变化 表明南京地区不同月份的外界条件对凤眼莲的光合能力的发挥有差异。因此 对南京地区不同月份凤眼莲的种养措施应有所侧重 可以使凤眼莲高效地利用外界光温条件 与此同时保持更多的光合功能叶片不早衰 是进一步提高南京地区凤眼莲光合于物质累积的有效途径。 #### 参考文献: - [1]赵运涛 李新华 涨征文.中国主要外来入侵物种的危害及防治措施[J]. 林业调查规划 2005 30(6):113-117. - [2] 胡长伟 孙占东 李建龙 等. 凤眼莲在城市重污染河道修复中的应用[J]. 环境工程学报, 2007, 12(1):51-56. - [3] 齐玉梅 高伟生. 凤眼莲净化水质及其后处理工艺探讨 [J]. 环境污染治理技术与设备,1999 7(2):136-140. - [4] 周文兵 , 谭良峰 , 刘大会 , 等. 凤眼莲及其资源化利用研究进展 [J]. 华中农业大学学报 , 2005 24(4): 423-428. - [5]王满莲 ,韦霄 蒋运生 等. 野生与栽培黄花蒿净光合速率对光强和 CO_2 浓度的响应 [J]. 热带亚热带植物学报 2007, 15(1):45-49. - [6] 王征宏 ,邓西平 ,刘立生 ,等. 干旱对不同冬小麦旗叶光合产物供应能力的影响 [J]. 西北农林科技大学学报: 自然科学版 2009 37(5):81-88. - [7]许太全 李德耀 沈允钢 等. 日田间小麦叶片光合作用"午睡"现象的研究[J]. 植物生理学报 ,1984 ,10(3): 269-276. - [8] Raschke K, Resemann A. The midday depression of CO₂ assimilation in leaves of *Arbutus unedo* L. diurnal changes in photosynthetic capacity related to changes in temperature and humidity [J]. Planta. 1986 , 168: 546-558. - [9]朱慧,马瑞君.2种水生入侵植物光合特性的比较[J]. 西北农林科技大学学报: 自然科然版 2010 38(5):193-198. - [10]李霞 任承钢 汪满 筹 江苏地区凤眼莲叶片光合作用对光强与温度响应[J]. 江苏农业学报 2010 26(5):943-947. - [11] Pierrick P , Frederik W , Christiane W. Pronounced differences in diurnal variation of carbon isotope composition of leaf respired CO₂ among functional groups [J]. New Phytologist , 2009 ,181(2):400-412. - [12] Christopher P B, David T H, Nate G M. Influence of diurnal variation in mesophyll conductance on modelled ¹³C discrimination: results from a field study [J]. Journal of Experimental Botany 2010 £1(12): 3223-3233. - [13] Feng Y L , Lei Y B , Wang R F , et al. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant [J]. Proceedings of the National Academy of Sciences 2009 ,106(6):1853-1856. - [14]武维华. 植物生理学[M]. 北京: 科学出版社 2004: 168-171. - [15]李建 杨清培 施建敏 爲. 当年生厚壁毛竹光合生理动态研究[J]. 江西农业大学学报 2010 32(4):763-767. - [16]杜菁昀 杜占池 准晓勇. 内蒙古典型草原地区常见植物光合、蒸腾速率和水分利用效率的比较研究[J]. 草业科学, 2001, 18(6):11-13. - [17] Grant D A , Plant response to atmospheric humidity [J]. Plant Cell Environ ,1990 ,13 ,667-679. - [18] Tucci M L S, Erismann N M, Machado E C, et al. Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical conditions [J]. Photosynthetica, 2010, 48(3):421-429. - [19] Xu D Q, Shen Y G. Midday depression of photosynthesis [M]//Pessarakli M. Handbook of Photosynthesis. New York: Marcel Dekker, 1996: 451-459.