土壤中 Cu、Cd 植物有效性模型 的建立与检验

丁 园¹²,史蓉蓉^{1*},赵帼平¹,黄子楠¹,万腊香¹

(1. 南昌航空大学 环化学院 江西 南昌 330063; 2. 南京农业大学 资环学院 江苏 南京 210095)

摘要: 选择我国代表性土壤中的黑土、暗棕壤、棕壤、黄棕壤、砖红壤、赤红壤、红壤、黄壤、紫色土、灰钙土、潮土和水稻土等 12 个土类的 57 个土壤样品为建模对象 ,以 0.1 mol/L HCl 提取的 Cu、Cd 含量表征土壤中重金属 的植物有效性含量 ,利用多元线性回归的方法建立土壤中 Cu、Cd 植物有效性与土壤理化性质的统计模型 ,并 选取南昌地区不同类型企业周边的蔬菜 – 土壤样品为模型验证对象 检验模型的适用性。研究结果表明 ,采用 权重离子冲量的形式可同时表征复合污染土壤中 Cu、Cd 的植物有效性: lgwI_{植物} = 0.995 lgwI_± + 0.153 lgP_{速效} + 0.084lgSOM -0.058pH -0.365 (r = 0.875 ,F = 42.570 μ = 57 ,P < 0.001) ,即土壤中 Cu、Cd 的植物有效态含量与土壤中重金属全量、有机质含量、速效磷含量呈正相关 ,与土壤 pH 呈负相关。独立于模型的土壤 – 蔬菜 样品中 Cu、Cd 含量的实测值与模型的预测值之间呈极显著的正相关关系(r = 0.864 μ = 75 ,P < 0.001) ,脸证 了模型的可靠性。

关键词:铜;镉;植物有效性;模型;建立;检验 中图分类号:S153.6⁺1 文献标志码:A 文章编号:1000-2286(2012)06-1286-05

Establishment and Test of Statistical Model for Phytoavailability of Copper and Cadmium in Soils

DING Yuan^{1 2}, SHI Rong-rong^{1*}, ZHAO Guo-ping¹, HUANG Zi-nan¹, WAN La-xiang¹

(1. College of Environment and Chemistry Engineering, Nanchang Hang Kong University, Nanchang 330063 , China; 2. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 , China)

Abstract: A statistical model were established for phytoavailability of Cu and Cd in different kinds of soils with 57 soil samples belonging to 12 soil classes , namely black soil , dark brown soil , brown soil , yellow brown soil , latosolic red soil , red soil , zheltozem , purple soil , light sierozem , alluvial soil and paddy soil. The phytoavailable contents of Cu and Cd in the tested soils were extracted by 0.1 mol/L HCl and the phytoavailability of Cu and Cd against soil physicochemical properties was analyzed with multiple regression method. Then , the statistical model was tested by the red soil – vegetable system in the adjacent area of Nanchang. The results indicated that weight ion impulse(I) could express the phytoavailability of Cu and Cd in combination soils: $lgwI_{plant} = 0.995 \ lgwI_{soil} + 0.153 \ lgP_{available} + 0.084 \ lgSOM - 0.058 pH - 0.365(r = 0.875 \ F = 42.570 \ n = 57 \ P < 0.001$). There was significant positive correlation between wI_{plant} and physico

收稿日期: 2012-05-28 修回日期: 2012-07-23

基金项目: 江西省科技支撑项目(2010BSA20000)

作者简介: 丁园(1976—) , 女 副教授 博士 ,主要从事土壤重金属污染的防治研究 , E – mail: luck_ding@ sina. com; * 通讯作者: 史蓉蓉 , 教授。

chemical properties (such as wI_{soil} , $P_{available}$ and SOM(soil organic matter) and negative correlation with pH. The predicted content of phytoavailability of Cu and Cd in the tested samples had significant correlation with the actual content , and the main driving factors were the total content of Cu and Cd , SOM , pH and $P_{available}$ (r = 0.864 p = 75 P < 0.001).

Key words: Cu; Cd; phytoavailability; statistical model; building; test

研究表明,土壤粘粒矿物、有机质、速效磷含量、阳离子代换量和 pH 等理化性质对土壤中重金属化 学形态的分配有较大的影响^[1-5],仅依据土壤重金属元素的总量不能很好地说明环境中重金属的化学 活性、再迁移性、植物有效性以及其最终对植物体或生态系统的影响^[5-7]。通过统计学的方法^[8],可定 量表征土壤中重金属的植物有效性与土壤理化性质之间的关系。然而,目前的建模工作大多数仅对某 种或两三种土壤中重金属的污染行为进行描述^[9-10],且通常是采用回代检验的方法对已建立的统计模 型进行检验^[11]。因此,在模型的应用过程中表现出一定的局限性,如利用酸性土壤建立的模型很难在 碱性土壤中应用,回代检验的方法夸大了统计模型的相关性等。

因此,论文选择我国代表性土壤中12个土类的土壤样品为建模对象,建立土壤中 Cu、Cd 植物有效性与土壤理化性质的评估模型,并选取污染企业周边蔬菜 – 土壤样品为模型验证对象(即独立于建模的对象),检验评估模型的适用性,为今后在区域尺度上预测土壤中 Cu、Cd 的植物有效性,实现污染土壤的修复和再利用奠定基础。

1 材料与方法

1.1 建模土壤样品的采集与前处理

分别在黑龙江、吉林、辽宁、江苏、广东、江西、贵州、四川、甘肃、河南等地选取黑土、暗棕壤、棕壤、黄 棕壤、砖红壤、赤红壤、红壤、黄壤、紫色土、灰钙土、潮土和水稻土等 12 个土类(*n* = 57)的表层土壤样品 (0~15 cm) 经风干后过 2 mm 筛,充分混匀后备用。分析土壤的 pH、有机质、速效磷、CEC、粘粒含量、 铜和镉全量^[12](表1)。

变量 Variable	最大值 Maximun	最小值 Minimum	平均值 Average	标准差 Standard deviation	偏度 Skewness	峰度 Kurtosis	分布类型 Distribution type
рН	8.72	4.01	6.22	1.06	0.51	-0.29	近似正态
CEC/(cmol • kg ^{-1})	29.07	1.25	14.72	6.46	-0.10	-0.21	正态分布
粘粒/%	59.45	6.98	28.98	10.92	0.56	1.28	正态分布
SOM/($g \cdot kg^{-1}$)	110.10	2.83	25.94	17.45	2.58	9.58	对数正态
Pavailable/(mg • kg ⁻¹)	231.76	1.67	18.22	33.00	5.21	32.13	近似对数正态
$\mathrm{Cd}_{\pm}/(\mathrm{mg} \cdot \mathrm{kg}^{-1})$	79.82	0.02	2.94	10.81	6.71	47.71	对数正态
$Cu_{\pm}/(mg \cdot kg^{-1})$	210.26	14.07	37.76	28.51	4.63	25.10	近似对数正态
$\mathrm{Cd}_{\mathrm{HCl}}/(\mathrm{~mg} \cdot \mathrm{kg}^{-1})$	22.92	0.01	0.95	3.34	5.74	35.46	对数正态
$Cu_{HCl}/(mg \cdot kg^{-1})$	19.90	0.18	2.15	3.31	4.16	19.03	对数正态

表1 建模土壤性质的统计学描述

Tab. 1	Statistical	description	of the	soil	properties	for	building	statistical	model
--------	-------------	-------------	--------	------	------------	-----	----------	-------------	-------

n = 57。Cu_{soi}、Cd_{soi}、Cd_{HCI}和 Cu_{HCI}分别表示土壤中 Cu、Cd 全量以及用 0.1 mol/L HCI 提取的土壤 Cu、Cd 含量。

n = 57. Cu_{soil} , Cd_{soil} , Cd_{HCl} and Cu_{HCl} are total content and extract content of test soil with 0.1 mol/L HCl solvent for Copper and Cadmium respectively.

1.2 验证模型的土壤 – 蔬菜样品采集与前处理

用于验证模型适用性的土壤采自南昌地区不同地理位置的6个企业(分别是钢铁厂1、钢铁厂2、电 镀厂、化工厂1、化工厂2和塑料厂)周边采集的蔬菜地。

为避免偶然性,依据网格法在每个企业周边连片地块布点采样,布点范围控制在1000m距离以内。每个采样点以GPS精确定位,采集表层(0~15 cm)土壤样品,共75组样品(钢铁厂1、钢铁厂2、电

表 2 验证模型的土壤 - 蔬菜样品特性的统计学描述

Tab. 2Statistical description of the soil properties for testing the statistical model									
	最小值	最大值	均值	标准差	变异系数	偏度	峰度	分布类型	
Variable	Minimum	Maximun	Average	Standard deviation	CV	Skewness	Kurtosis	Distribution type	
рН	3.9	8.0	5.77	0.99	17.14	0.082	- 1.090	近似正态	
$W_{som}/($ g • kg $^{-1})$	12.89	66.91	35.40	12.77	36.06	0.548	-0.32	正态分布	
$W_{avail - p} / (\text{ mg } \cdot \text{ kg}^{-1})$	3.59	393.35	100.76	83.49	82.87	0.93	0.72	近似正态	
$W_{soil - Cd}/($ mg • kg $^{-1})$	0.44	19.70	2.19	3.79	172.66	3.54	12.40	近似对数正态	
$W_{soil - Cu} / ($ mg • kg $^{-1})$	24.77	364.93	66.60	67.53	101.39	3.38	11.13	近似对数正态	
$W_{vegetable - Cd}/($ mg • kg $^{-1})$	0.01	0.65	0.073	0.12	164.38	3.82	16.91	对数正态	
$W_{vegetable - Cu}/($ mg • kg $^{-1})$	0.28	18.33	1.81	2.84	156.91	3.42	12.51	对数正态	

n = 57。 W_{son} 、 $W_{avail-p}$ 、 $W_{soil-Cd}$ 、 $W_{soil-Cd}$ 、 $W_{vegetable-Cd}$ 、 $W_{vegetable-Cu}$ 分别表示土壤有机质、速效磷、土壤全镉、全铜、蔬菜中Cu、Cd 含量。

 $n = 57 \circ W_{\text{som}}$, $W_{\text{avail-p}}$, $W_{\text{soil-Cd}}$, $W_{\text{soil-Cu}}$, $W_{\text{vegetable-Cd}}$, and $W_{\text{vegetable-Cu}}$ are content of soil organic matter, available phosphorous, total cadmium, total copper in soil and vegetable respectively.

镀厂、化工厂 1、化工厂 2 和塑料厂的采样数分别为 12、14、16、12、11 和 10)。蔬菜品种包括: 白菜、萝卜 苗、卷心菜、红薯藤、莴笋、生菜和花菜等 7 个品种。表 2 为验证模型的土壤 – 蔬菜样品的理化性质。

1.3 评估模型的基本假设

土壤中 Cu 和 Cd 的植物有效性受到土壤中重金属全量、pH、有机质、CEC、养分、粘粒等基本理化性质的影响。土壤中铜、镉的植物有效性可以用 0.1 mol/LHCl 浸提^[13]。

由于重金属的价电子数在一定程度上反映土壤对其吸附能力的强弱 因此可采用离子冲量^[13]同时 表征 Cu 和 Cd 的植物有效性,并且对 Cu 和 Cd 的毒性做加权(Cd = 30,Cu = 5)处理^[14],即采用权重离子 冲量同时表征 Cu、Cd 的植物有效性:

$$wI = \sum w \, \frac{C_i}{n} \tag{1}$$

式中 C_i 为Cu或Cd的浓度p为重金属离子的氧化数,Cu和Cd的权重值w分别为1和6。

由(1) 式分别计算供试土壤中 Cu、Cd 全量的权重离子冲量 wI_{\pm} 和植物有效态的权重离子冲量 wI_{ham} 。

1.4 统计分析方法

实验数据的初步整理计算工作在 Excel 表格中完成,再于 SPSS 13.0 for Windows 软件中完成统计分析。为了将数据标准化对部分数据进行了以10为底的对数化处理,使随机样本统计值趋于正态分布。

2 结果与讨论

2.1 土壤中 Cu、Cd 植物有效性模型的建立

用于建模的土壤样品中 Cu、Cd 的污染水平是否具有代表性直接影响土壤中 Cu、Cd 植物有效性评 估模型的适用性,论文采用地累积指数(*I_{ge}*)^[15]评价供试土壤中 Cu、Cd 含量的污染水平。结果表明,由 于人为污染引起土壤中 Cu 或 Cd 重度污染、轻中度污染和未污染的土壤比例分别为 28.07%、26.31% 和 45.61%,说明供试土壤中 Cu、Cd 含量水平的分布具有代表性。

为了消除土壤基本理化性质各因子间的相互作用,采用偏相关分析的方法,确定土壤中 Cu、Cd 植物有效态的权重离子冲量 wI_{植物}与土壤基本理化性质以及土壤中 Cu、Cd 全量的权重离子冲量 wI_{土壤}的偏相关关系,如表3所示。

SOM、CEC、Clay、P 速效、 I_{\pm} 和 I_{ab} 分别表示土壤有机质、阳离子代换量、粘粒、速效磷、土壤中 Cu、 Cd 全量的权重离子冲量和 Cu、Cd 植物有效态的权重离子冲量。

由表 3 可知, *wI*_{植物}与 *wI*_±、P_{速效}、SOM 含量呈极显著的正相关关系,与土壤 pH 呈显著的负相关关系,而与其它理化性质的相关性不显著。土壤中重金属全量相当于库,库的大小决定着土壤中 Cd 和 Cu 的植物有效性的高低。土壤中有机质含量和速效磷含量的增加,使土壤溶液中重金属的潜在有效态向

	表 3 土壤中 Cu、Cd 的植物有效性与土壤基本理化性质的偏相关关系
Tab. 3	Partial correlation between phytoavailability of Cu , Cd and physic - chemical properties in soils

 变量	偏相关关系	WI±	$P_{i\!$	SOM	рН	CEC	Clay
w I _{植物}	偏相关系数	0.935	0.569	0.392	-0.334 0	-0.0396	-0.206
	P 值	0.000	0.000	0.003	0.016	0.781	0.143

分别用*、**和 *** 表示 $P < 0.05 \ P < 0.01$ 和 P < 0.001 显著性水平 p = 57。SOM、CEC、Clay、 $P_{available}$ 、 I_{soil} 和 I plant 分别表示土壤有机质、阳离子代换量、粘粒、速效磷、土壤中 Cu、Cd 全量的权重离子冲量和 Cu、Cd 植物有效态的权重离子冲量。

* ,** and *** are significant level of P < 0.05, P < 0.01 and P < 0.001 representively, n = 57. SOM, CEC, Clay, P_{available}, I_{soil} and I plantare content of soil organic matter, cation exchange capacity, clay particle, available phosphorous, weight-ion impulse of Cu - Cd in soil and plant respectively.

有效态转化,提高了土壤中重金属的植物有效性。当土壤溶液中 H + 增加, H^+ 、 Cd^{2+} 、 Cu^{2+} 以及其它的 盐类产生竞争吸附,反之,当 H⁺浓度降低, Cd 和 Cu则更易形成难溶化合物,使土壤中 Cd 和 Cu 的植物

Fig. 1 Correlation of predicted value and measured value of *wI* of Cu, Cd phytoavailability in soils 有效性降低。这与刘影等^[11]关于水稻籽粒中 Cd 与土壤中全 Cd、有机质含量以及 pH 等因素的相关分析结果是一致的。进一步采用多元线性回归的方法,建立 *wI*_{植物}的统计模型(2)。

 $lgwI_{\underline{a}\underline{b}} = 0.995 \ lgwI_{\pm} + 0.153 \ lgP_{\underline{a}\underline{b}\underline{b}} + 0.084 \ lgSOM - 0.058 \text{pH} - 0.365$ (2) (r = 0.875 F = 42.570 p = 57 P < 0.001)

根据统计模型(2)计算 wI_{植物}的模拟值。以模拟值为横坐标,残差(实测值与模拟值之差)为纵坐

标 绘制残差图,并通过 SPSS13.0 制 作残差分布的频数图(图1)。由于模 型建立时,对建立模型的相关参数进 行了对数转换,因此模拟值以 wI_{植物}的 对数形式表征。

由图1可知,残差围绕零坐标直 线上下随机散布,残差频数呈正态分 布,说明模拟值与实测值的拟合情况 良好,即建立的统计模型可靠。

2.2 土壤中 Cu、Cd 植物有效性模型的检验

of Cu , Cd phytoavailability model

边的蔬菜 – 土壤样品作为独立于模型的验证对象。根据模型(2) 预测土壤中 Cu 和 Cd 的植物有效态权

重离子冲量 wI_{aby} ,并与实测的 Cu 和 Cd 的植物有效态权重离子冲量 wI_{aby} 进行相关分析(图 2) 检验 统计模型的适用性。

从图 2 可以看出 ,Cu、Cd 的植物有效态权重离子冲量的预测值 $wI_{植物预}$ 与实测值 $wI_{植物测}$ 呈极显著相关(r = 0.864 p = 75 ,P < 0.001)。说明土壤中 Cu 和 Cd 的全量、有机质、pH 和速效磷是决定土壤中 Cu、Cd 的植物有效性的主要因素。

3 结 论

土壤中 Cu、Cd 的植物有效性主要受到土壤中重金属全量、有机质、速效磷含量和 pH 的影响,其统 计模型为: lgwI_{植物} =0.995 lgwI_± +0.153 lgP_{速效} +0.084 lgSOM -0.058pH -0.365 (r =0.875 ,F =42.570 n = 57 ,P <0.001)。

用独立于建模的红壤 – 蔬菜系统中的 75 个样品检验统计模型,预测值与实测值表现出极显著的正 相关关系(*r*=0.864 *n*=75 *P*<0.001),再次证实土壤中 Cu 和 Cd 的全量、有机质、速效磷含量和 pH 是 决定土壤 Cu、Cd 植物有效性的主要因子。

参考文献:

- [1] Richards B K, Steenhuis T S, McBride M B. Effect of sludge processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading [J]. Environmental Pollution 2000,109:327 – 346.
- [2] Romkens P F A M ,Guo H Y , Chu C L. Prediction of Cadmium uptake by brown rice and derivation of soil plant transfer models to improve soil protection guidelines [J]. Environmental Pollution , 2009 ,157: 2435 – 2444.
- [3]Khan M J Jones D L. Effect of composts lime and diammonium phosphate on the phytoavailability of heavy metals in a copper mine tailing soil [J]. Pedosphere , 2009 , 19(5):631-641.
- [4] Sauve S, Hendershot W, Allen H E. Solid solution partitioning of metals in contaminated soils : dependence on pH, total metal burden, and organic matter [J]. Environmental Science & Technology, 2000 34(7): 1125 11311.
- [5]陈怀满. 环境土壤学[M].2 版.北京:科学出版社 2010:185.
- [6] Wang H Y Sun X Y. Studies on heavy metal pollution in soil plant system: A review [J]. Forestry Studies in China 2003, 5(1):55-62.
- [7] Chen H M , Zheng Ch R. Combined pollution and pollution index of heavy metal in red soil [J]. Pedosphere , 2000 ,10(2): 117-121.
- [8]McBride M B. Cadmium uptake by crops estimated from soil total Cd and pH[J]. European Journal of Soil Science, 2002, 167(1):62-67.
- [9]McBride M B. Toxic metals in sewage sludge amended soils: has promotion of beneficial use discounted the risks [J]. Advances in Environmental Research 2003 8:5 – 19.
- [10]Sebastian D Guala, Flora A Vega. The dynamics of heavy metals in plant soil interactions [J]. Ecological Modelling, 2010, 221: 1148 - 1152.
- [11] 刘影, 黄耀. 水稻籽粒镉积累模型[J]. 安全与环境学报, 2007, 7(1): 4-7.
- [12]鲁如坤. 土壤农业化学分析方法 [M]. 北京: 中国农业科学出版社, 2000.
- [13] 丁园,魏立安,宗良纲,等.土壤中铜、镉植物可利用性的表征[J].环境科学与技术 2010 33(2):27-30.
- [14] Hakanson L. An ecology risk index for aquatic pollution control: a sedimentological approach [J]. Water Resources, 1980, 14(8): 975-1001.
- [15]Korre A, Durucan S, Koutroumani A. Quantitative spatial assessment of the risks associated with high Pb loads in soils a-round Lavrio, Greece [J]. Applied Geochemistry, 2002, 17(8): 1029 1045.